Bioinformatics Solutions, Inc. Chooses Science Exchange as the Primary Online Channel to Offer Protein de novo Sequencing Services to Scientists

December 11, 2017 | Posted by Team in Lab Profiles, New Innovations, Press Release, Research |

BSI Science Exchange Partnership

PALO ALTO, CA, December 11, 2017 – Science Exchange, the world’s leading and most secure enterprise platform for outsourced research and development (R&D) services, announced the partnership with Bioinformatics Solutions, Inc. to offer online access to its protein de novo sequencing services to scientists around the globe.

As the creators of the well-known, highly established PEAKS Software, the golden standard of de novo sequencing, Bioinformatics Solutions, Inc., offers their de novo sequencing expertise to scientists at a new level by sequencing the samples themselves.

“Bioinformatics Solutions, Inc. has developed a proprietary de novo protein sequencing workflow to retrieve the amino acid sequence of an unknown antibody protein with state-of-the-art mass spectrometry techniques. Through this workflow, the sequence assembly is purely based on de novo sequencing. Therefore, no database, cDNA, mRNA, or hybridoma cell line is required,” exclaims Baozhen Shan, CEO of Bioinformatics Solutions, Inc. “With constant ongoing research at Bioinformatics Solutions, Inc., the advanced technology will ensure our service delivers a highly accurate sequence, identification of sequence variants, glycosylations, and unknown modifications.  By partnering with Science Exchange, these sequencing services will now be available to researchers all over the world to help them make breakthrough discoveries.”

Over the last few years, Science Exchange has undergone extensive growth and recently received a $28 million in Series C funding led by Norwest Venture Partners. By continuing to team up with companies like Bioinformatics Solutions, Inc. Science Exchange is providing researchers worldwide with access to the most important scientific services to advance their experiments.

“We are excited to partner with Bioinformatics Solutions, Inc. to make available its protein de novo sequencing services to scientists worldwide,” said Elizabeth Iorns, Ph.D., co-founder and CEO of Science Exchange.  “Science Exchange is committed to adding the most innovative and qualified service providers to our platform, so scientists have the services they need securely and readily available to aid their discoveries. Bioinformatics Solutions, Inc. met our rigorous standards for quality and compliance while demonstrating breakthrough discoveries in the field of proteomics analysis.”

 

About Bioinformatics Solutions, Inc.

For more than 15 years, Bioinformatics Solutions, Inc. has been changing the field of proteomics analysis, by pushing the boundaries of its computational limits and striving to provide groundbreaking research with the customer-first approach. Bioinformatics Solutions, Inc. believes the only solution is one that incorporates quality and timely results, a satisfying product experience, customer support and two-way communication. This diverse and adaptable group is committed to serving the needs of pharmaceutical, biotechnological, and academic scientists; and to the progression of recombinant protein production and drug discovery research. For more information, visit www.scienceexchange.com/labs/bioinformatics-solutions-inc. Follow the company on Twitter @PEAKSProteomics and @PEAKSAB.

New on Science Exchange: Focus on Spectrometry

October 4, 2017 | Posted by Team in New Innovations, Research |

Chandreyee Das, Ph.D. | Senior Content Manager, Science Exchange | www.scienceexchange.com

This installment of New on Science Exchange features spectrometry experts at CMP Scientific, Protypia, CovalX, Nightingale Health, and The Scripps Center for Metabolomics. Ready.. set … analyze.

Emass-II Ion Source CMP Scientific

CMP Scientific: Capillary electrophoresis – mass spectrometry (CE-MS) experts

Analytical researchers frustrated by the long separation times, high sample requirements, or low throughput of LC-MS have long been attracted to the advantages of CE-MS.

In 2015, the CE-MS technique was revolutionized — in that year, Brooklyn, New York-based CMP Scientific pioneered the EMASS-II CE-MS ion source, a novel interface between the capillary and the mass spectrometer’s electrospray emitter that conferred nanoflow sensitivity and high electrospray efficiency.

Since then, CMP Scientific has gained a proven track record for helping drug discovery and development companies develop CE-MS methods for pharmaceutical and biopharmaceutical analysis. Will your research program be the next to benefit from CE-MS technology?

Connect with the CMP Scientific team on Science Exchange.

 

The Scripps Center for Metabolomics: Respected mass spec core exposes the exposome

What are the biological effects of the exposome — i.e., the sum of all environmental toxicants, food contaminants and supplements, drugs, and antibiotics your body is exposed to daily?

Thanks to XCMS/METLIN, a software combined with a cloud-based database founded by the researchers at the Scripps Center for Mass Spectrometry and Metabolomics, investigations into the elusive exposome are now possible. On September 25, the lab published the results of their initial study — and we were very excited to have such a groundbreaking team join the Science Exchange network!

The facility serves its customers both at Scripps Research Institute as well as in the broader biotechnology community with its analytical expertise, for routine as well as specialty projects. They offer not only ESI, MALDI, and GC/MS of a wide range of samples and analytes, but also access to the world’s leading metabolomics/lipidomics platform.

 

Nightingale Health: Epidemiology-scale metabolomics, using NMR

Based in Helsinki, Finland, Nightingale Health has been transforming population health studies using its novel, NMR spectroscopy-based platform to detect multiple metabolites, across diverse pathways, in human plasma and serum. This fully automated biomarker quantification method can provide superior repeatability compared to mass spectrometry methods and is coupled with automated quality control.

Now available on Science Exchange, Nightingale Health’s services are accessible to researchers seeking novel biomarkers for large population studies of cardiovascular health, diabetes, and other aspects of metabolic syndrome.

 

Protypia: Advancing immunooncology through quantitative proteomics

The complexity of immune checkpoint signaling has led the field to the conclusion that there are more determinants to immunotherapeutic efficacy than PD-1 or PD-L1 expression alone. Vanderbilt University’s Daniel Liebler, President and Founder of Protypia, has used his team’s expertise in quantitative proteomics to show that differential glycation of checkpoint signaling proteins could affect tissue staining results as well as signaling protein function [abstract].

Visit the Protypia storefront to request a quote for your proteomics project — this team might just enable your next drug discovery breakthrough.

 

CovalX: High-Mass MALDI yields cost-effective info on epitopes

Founded in 2005, this global, fast-growing service provider established its prominence by developing a very differentiated technology  — fast, sensitive and accurate analysis of protein complexes by High-Mass MALDI mass spectrometry. Unfragmented and undigested, the protein complexes are detected intact using specially developed cross-linking reagents and high-mass detection system.

Combined with CovalX’s covalent crosslinking technology, this mass spectrometry method provides a method for epitope mapping that is faster and more cost-effective than many other conformational analysis techniques. For researchers analyzing protein biotherapeutics and biosimilars, it’s an attractive option.

 

Browse these and other new service providers on Science Exchange today!

 

Mass Spec: Shedding Light on Cancer Biomarkers with Century-Old Technology

October 5, 2016 | Posted by Christina Cordova in Research, Stories, Uncategorized |

Imagine telling the inventor of the radio that the technology he discovered was now found in almost every kitchen in America, and that you used it to make your popcorn last night. He’d probably be surprised, and maybe you are, too.  Sound far-fetched? Many aspects of modern life rely on technology that was first identified by 19th century physicists and then adapted to new applications. This not only includes microwave ovens from the example above, but state-of-the-art lab equipment which is poised to change the way researchers treat cancer. It might be hard to imagine cutting-edge discoveries in proteomics or precision medicine are the result of technology first conceived over a hundred years ago, but that’s what a new application called proteomic mass spectrometry imaging is doing for cancer diagnostic tests.

Many life scientists utilize research tools built on principles first explored and defined by physics, and mass spectrometry is a particularly impactful example. The technology we now use to measure mass-to-charge ratios of ions for the purpose of molecular analysis was first developed by J.J. Thomson on an instrument called a parabolic spectrograph in 1913. The spectrograph generated ions in gas discharge tubes, then passed the ions through parallel electric and magnetic fields. Subjecting the ions to these fields forced them to move in certain parabolic trajectories which would then be recorded on a photographic plate, as seen in the rather beautiful image below.

Discovery_of_neon_isotopesIt was Thomson’s research at the end of the 19th century that lead to the discovery of the electron, work that eventually won him the Nobel Prize in physics in 1906. To hear a 77 year-old Thomson talk about that research (and how very small electrons are at around the 2:50 mark), watch this video filmed in 1934.

Besides the name change (there aren’t any spectrographs in labs these days), mass spectrometry has come a long way technologically. Advances by subsequent researchers made the technology more precise and the resulting output more accurate. In 1920 the first modern mass spectrometer was developed by Arthur Dempster, of uranium isotope fame, and by the 1970s scientists had begun experimenting with joining liquid chromatography techniques to the process. In 1989 the first LC-MS instrument was launched, securing it as a ubiquitous technique now in its third decade of use. The staying power of this technology is due to its versatility; it is able to directly analyze any biological molecule receptive to ionization. Scientists can use LC-MS to better understand the molecular structure of everything from wastewater to skin cream. The data collected during analysis can inform evaluation of product effectiveness, environmental toxins, or the function of a protein. For this reason it provides valuable research applications in environmental analysis, consumer products, agriculture, and in this case, precision medicine.

Now a bona fide buzzword, the concept of precision medicine was catapulted into the social vernacular in 2015 when President Obama announced the Precision Medicine Initiative in his State of the Union Address. In practice, precision medicine isn’t entirely new; physicians and researchers have long understood the importance of individualized factors in treating or diagnosing patients. The concept of blood type matching and bone marrow donation registries are both examples of precision medicine we have accepted as standard treatments. Advances in biotechnology are ushering in a new emphasis on specialized medicine and carry with it the hope of more effective diagnostics and treatments for ailments like cardiovascular disease and cancer. Much of this promise rests on discoveries being made in the field of proteomics, particularly about the role of proteins in healthy cells versus diseased cells. The form, function, and interaction of these proteins can indicate the presence of disease, identify molecular therapeutic targets, and help define molecular disease taxonomies for future research. Finding a measurable indicator for any of these biological states is called a biomarker, making it the focus of many proteomics and cancer researchers.

It turns out, a very familiar technology is proving to be the best tool for unlocking the largely unknown world of proteins. LC-MS breaks down the complicated protein structures from their three dimensional form, and then into even smaller units called peptides. The quantitative analysis of these peptides makes it possible for scientists to identify protein expression profiles associated with certain cancers. Clinically viable biomarker panels could greatly increase early detection and definitive disease identification in patients, both of which are known to improve patient survival rate. This specificity in diagnosis allows patients and physicians to be better informed when making treatment decisions by understanding the disease on a molecular level. Biomarkers can improve standard differential diagnosis descriptions, which up to now have largely included physical symptoms that manifest at later stages of disease development, like metastasis. Some diseases like malignant melanoma present in very cryptic ways, making them difficult to diagnose, even for highly trained dermatopathologists. Inconclusive biopsy results or histological features that are also found in non-cancerous moles complicate diagnosis and can lead to costly mistakes in the course of treatment for such a common and potentially deadly disease. According to the American Cancer Society over 10,000 people will die this year from the disease, making it the most lethal of all skin cancers. A collaborative research project between Yale scientists and Protea Biosciences is seeking to change that with a new diagnostic technology. In April of this year they announced exclusive licensing for a method which uses unique protein expression profiles to discern the presence of cancer. The results of the first clinical study were presented in 2015, showing 99 percent accuracy in identifying malignant melanoma and benign melanocytic nevi.

Achievements like this highlight the benefit of partnerships between academia and industry, which are becoming more common in many sectors of biotechnology. If precision medicine is to become a reality, it will have to tackle complex disease models that have historically confounded individual pharmaceutical companies or research labs. Open innovation between researchers on both sides advances scientific discovery and expedites successful clinical implementation of potentially life-saving drugs. As scientists work on more complicated human health issues, they will need to find collaborators who are best suited to solve the research objective at hand, while accessing novel technologies best suited for the job.

Just as the concept of precision medicine has expanded with scientific discoveries in biotechnology, the technique of mass spectrometry has evolved to address new research questions with advances in bioinformatics and lab technology. Deciphering the human proteome is still a ways off, but innovative techniques and research partnerships will surely have a role to play in unlocking the power of proteomics for human health. As LC-MS capabilities continue to improve, new disease diagnostics and treatments will be added to the arsenal of options available to physicians. The next time you hear about an advancement in precision medicine (or pop a bag of popcorn), thank a physicist.

Looking for a cutting-edge collaborator like Protea to help with your research project? Visit our marketplace to find the right provider for your mass spec analysis, or any of the thousands of experiment types we offer.

About Science Exchange

We are transforming scientific collaboration by creating a marketplace where scientists can order experiments from the world's top labs.

Check the Science Exchange blog for updates, opinions, guest posts and the latest happenings at Science Exchange HQ!

Visit Science Exchange →

Subscribe to the blog
Never miss a post! Science Exchange blog posts delivered right to your inbox.
Thank you for joining the SciEx revolution!
Powered By WPFruits.com