AsureQuality

November 21, 2016 | Posted by Team in Lab Profiles |

Science Exchange has top quality service providers located in all parts of the world. Today we’re profiling one of our newest service providers AsureQuality, a New Zealand based provider of food safety and biosecurity services to the food and primary production sectors worldwide.

Science Exchange correspondent Peter Kerr recently paid a visit to their Lower Hutt laboratory where he caught up with Chief Science Officer (CSO) Dr. Harry van Enckevort.

Global mindset drives Kiwi ‘stamp of approval’ enterprise

AsureQuality

Dr. Harry van Enckevort AsureQuality CSO

How does an organisation from the bottom of the world, excel internationally in verifying and stamping its approval on food quality and safety?

The first answer is because New Zealand exports over 90% of the food it produces, and other countries demand assurances of quality and safety against their market access standards.

The second is through 120 years of experience backed by expertise, professionalism and integrity which sees AsureQuality as its home country’s premier food assurances provider. These attributes also see it with significant operations in Australia, Singapore, China and the Middle East.

AsureQuality’s 1700 people have inherited and continue to develop world-leading inspection, auditing, certification, testing, training, advisory and authentication services.

As a recognised Conformity Assessment Body (CAB) it has a mandate that integrates inspection and certification with testing.

Dr. van Enckevort says food is the State Owned Enterprise’s main focus – giving consumers confidence in what they eat while also protecting the brands of countries and companies.

As well as New Zealand clients, customers include very well known non-NZ multinationals, with some of these brands also in the very sensitive infant formula space.

“AsureQuality also has a key role in New Zealand’s food safety regulatory framework and to do that we have to walk the line between customers and regulators. To achieve it we can’t have conflicts of interest. In practice it means across all AsureQuality services, we have to maintain our independence. We can only do that because we carefully cultivate our expertise, professionalism and integrity.”

Dr. van Enckevort says the organisation is based on a deeply skilled people resource underpinned by its science and technical capabilities.

“We also have a worldwide overview – helping take exports out of New Zealand and bringing global perspectives back home,” he says. “That customer focus is a two-way flow; they lead us and we lead them. If we didn’t there is no way we’d have our global expertise in food quality and safety.”

He says the company instills continual improvement through looking at ourselves and customer feedback and surveys.

“We’re constantly looking at what we need to do to stay relevant and ahead of the game and competition,” Dr van Enckevort says. “We’re always looking to find a better way, challenging our people how we can do things better, faster and smarter while still maintaining the quality of our output. Because there’s always changes in customers and industry as well as customer needs, we have feedback loops and responses.”

A particular point of focus is to add value for a customer beyond mere compliance, not simply ticking a box as part of an audit or certification.

When we give customer feedback in an audit, they might ask what the options are to mitigate the issues, “We say, here are some options – we don’t tell them what to do – they need to make their own call,” he says.

For AsureQuality to still be thriving in five years time, “to still have relevance, we will have to be commercially successful.”

“Our market offering will have to continue to be relevant, and we’ll need to maintain our comparative advantage against our competitors. If we do that we’d like to think we’ll have a larger global presence than we presently do. To achieve that we’ll need to continue to have the right people in the right place with the right expertise and service.”

“So far we’ve met the demands of customers and stakeholders all across the world. By maintaining our core focus on science and technology that is how we will continue to provide the services they want, how we will continue to grow.”

AsureQuality Lab


Would you like to work with AsureQuality on your next project? AsureQuality and thousands of other high quality service providers look forward to doing business with you on the Science Exchange platform. Request a free quote from any of these service providers today!

Humanized Antibodies: Key Technology for Effective Immunotherapies

November 1, 2016 | Posted by Christina Cordova in Research |


Harnessing the power of the immune system for therapeutic use in human disease is not a new idea, but recent advances in biotechnology have brought new precision to the way physicians and researchers approach therapy development.  Monoclonal antibodies (mAbs) have offered real progress toward fighting many autoimmune diseases and several forms of cancer, turning immunotherapy into a multibillion dollar segment of the biopharmaceutical industry.  An estimated 37 million people are afflicted with
cancer or an autoimmune disease in the United States alone, making advances in these therapies impactful for improving survival rate and quality of life for millions of patients world-wide.  As more antigens are linked to cancer, promising mAb therapies are emerging which target and block certain cancer-specific antigens.  These antigens are often functional parts of the cancer cells, or aid in the function of cells and expedite cancer growth.  MAbs are also developed to target cancer cells in the body by attaching to them, thus marking them to be eliminated by the body’s immune system.  Conjugated mAbs use specific antibodies as a homing device to deliver a deadly dose of cancer-killing agents or radioactive substances to cancerous cells in the body.  Autoimmune disorders often manifest with a concentrated attack on a specific organ system caused by immune reactivity to particular self antigens.  Identifying these antigens as the targets of mAb therapies could offer significant progress in treating diseases including multiple sclerosis, psoriasis, rheumatoid arthritis, Crohn’s disease and ulcerative colitis.

128px-Antibody.svgAntibody therapy as we know it today began in 1975, when scientists Cesar Milstein and Georges J. F. Kohler pioneered technology to produce monoclonal antibodies by creating the first hybridoma.  To produce hybridoma cells, scientists inject mice with an antigen linked with the particular immune response they are interested in triggering.  Mice are then screened for production of the desired antibodies and if a sufficient level is detected, B cells (the type of cells that produce antibodies) are harvested from the spleen to be used in the hybridoma.  Spleen cells on their own have a very limited lifespan, so they must be fused with immortal myeloma cells to increase their longevity and ability to reproduce.  This resulting hybrid cell can multiply indefinitely and is capable of producing antibodies at a volume large enough to be used for therapeutic or diagnostic applications. These initial antibodies were murine, meaning both cell lines were derived from mice.  However, differences between mouse and human immune systems caused clinical failure of many murine antibody therapies due to immunogenicity.  This undesired response to immunotherapy happens when the antibody being introduced is seen as a foreign protein by the body’s immune system and prompts a sever immune response in the patient.  Unlike vaccines, activating the immune system in this way can render mAbs ineffective or trigger an allergic reaction in the body such as anaphylaxis, or cause the rapid release of proinflammatory cytokines, known as cytokine release syndrome.

To decrease the chance of immunogenicity, chimeric antibodies were developed which fused murine antibody variable (antigen binding) regions with human antibody constant (effector) regions.  Lower immunogenicity allows chimeric antibodies to be used in biotherapeutics, assay development, and diagnostics.  As antibody engineering technology improved, the first humanized antibodies were created hoping to fully address the issue of immunogenic response in patient populations.  However, immunogenicity still proves to be an obstacle in immunotherapies, prompting the FDA to publish a guidance document for the industry on immunogenicity assessment for therapeutic protein products.  For biopharmaceutical companies seeking to launch new immunotherapies, the production and validation of humanized antibodies is a critical component in drug research.  There are several methods of humanization employed in antibody engineering:

  • CDR grafting – Combines antibody variables called complementarity-determining regions (CDRs) which determine where antibodies bind to a particular antigen, with human constants.  Antibody specificity and antigen affinity are retained by utilizing residues associated with antigen binding. This results in an antibody that is mostly human, with only CDRs from nonhuman origin.
  • Phage display – A process of using simple organisms, such as bacteriophages, to display antibodies or antibody fragments which are genetically fused to the phage coat protein.  The bacteriophage are genetically engineered through repeated cycles of antigen-guided selection, used to create a human phage display library, and then screened for binding affinity to a specific antigen.
  • Transgenic animals – Mice are genetically engineered with introduced human antibody heavy and light chain gene sequences, along with targeted modification of endogenous mouse antibody genes in order to suppress their expression.  What results is a transgenic mouse which can produce fully human antibody repertoires.

Antibody engineering techniques vary depending on the target antigen and application, however robust characterization is an essential part of successful antibody production.  Assays to determine appropriate end-use effectiveness include screening for a cross-reaction with other protein species, checking for affinity requirements, application-specific viability such as immunohistochemistry, and inclusion of control studies at each stage.  Due to the complexity of antibody engineering and rigor required in mAb production, working with knowledgeable collaborators is key in the success of humanization service projects.  

Science Exchange offers access to experienced service providers specializing in the mAb production techniques mentioned here, as well as thousands of other experiment types.  Visit our marketplace to start your antibody engineering project today.

 

About Science Exchange

We are transforming scientific collaboration by creating a marketplace where scientists can order experiments from the world's top labs.

Check the Science Exchange blog for updates, opinions, guest posts and the latest happenings at Science Exchange HQ!

Visit Science Exchange →

Subscribe to the blog
Never miss a post! Science Exchange blog posts delivered right to your inbox.
Thank you for joining the SciEx revolution!
Powered By WPFruits.com