Science Exchange Stories: Derek Duan, Eyegenix, LLC.

June 26, 2014 | Posted by Tess Mayall in Scientist Spotlight |
BioSynthetic Artificial Cornea of Eyegenix LLC.

BioSynthetic Artificial Cornea of Eyegenix LLC.

Derek Duan is a Principal Investigator at Eyegenix, a small biotech in Hawaii that is creating a unique way to cure corneal blindness.

How are they doing it? By creating a synthetic, transplantable cornea that promotes tissue regeneration.

I spoke with Derek about their novel approach to curing blindness, the biotech scene in Hawaii, and his experience using Science Exchange. Check out our conversation below.

Q: Tell me about Eyegenix.

Derek: We’re a biotech company located in Honolulu, Hawaii. We’re doing research and development on the most advanced artificial cornea in the world. This is a biosynthetic polymer based product.

We’re very excited to put our artificial corneas into the market as soon as possible, because there are millions of people globally that could be cured with this product.

Q: How did the company start?

Derek: Dr. Hank C.K. Wuh, who was born in Hawaii and educated in the mainland, founded the company in 2012. He wanted to come back and serve Hawaii. He’s making use of the island as an intersection of Asia, Australia and America to be a center for biotech research. That’s why he decided to come back and fund his company. Read the rest of this entry »

Lab Profile: Zhiyong Wang, ADS Biosystems

June 19, 2014 | Posted by Tess Mayall in Lab Profiles |


Zhiyong Wang in the lab at ADS Biosystems.

Zhiyong Wang in the lab at ADS Biosystems.

I recently talked with Zhiyong Wang Ph.D, CEO of ADS Biosystems Inc. ADS Biosystems specializes in cell-based assay development. In particular, Zhiyong applies his experience and expertise from the renowned Hunter Lab at the Salk Institute to develop assays with brown and white fat, routine human cell lines,  human adult stem cells, and rodent cochlea.

Check out more on his background and inspiration below.

Q: What were you doing before you started ADS Biosystems?

Zhiyong: From 2002 – 2009, I was a research associate in the Hunter Lab at the Salk Institute. The lab is fantastic and everyone enjoys developing and working on their own projects. It’s a great environment with diverse expertise and collaborative spirits. Tony encourages people to be independent and explore what inspires them. Tony co-founded the Signal Pharmaceutical Inc., which is now part of Celgene Corp. Therefore, it is not surprising that a few people from his lab have started their own companies.

I was researching metabolism, obesity, and diabetics with mouse genetic models, and discovered crucial roles of transcriptional master regulators in obesity and glucose resistance. I was fascinated with fat cells (adipocytes) in particular.

That was the reason why I was recruited to a local stem cell company that planned to build a brown fat program from scratch. At that time, there were exciting discoveries that adult humans have brown fat, which burns energy and may be used to combat obesity and diabetes. I was really excited about the project and enjoyed building the brown fat program from the ground up. I discovered a family of small molecule compounds that induced brown fat formation from human adult stem cells. I also developed a platform to discover novels compounds, which induce brown fat formation in obese patients to burn extra energy.

Another project at my previous company started with a Department of Defense (DOD) grant. As you know, some of our soldiers at Afghanistan and Iraq experienced battlefield noises and lost their hearing. We wanted to restore their hearing by stimulating stem cells in cochlea to regenerate inner ear hair cells, which are responsible for sound wave sensing. As the lead scientist for the project, I developed cochlear organ culture-based assays to identify candidate compounds, which induce hair cell regeneration. Our hearing team was great in that we really enjoyed working together and we were very productive: we generated two patents for the compounds of hearing restoration and discovered a novel pathway critical for inner ear hair cell regeneration. Read the rest of this entry »

Is scientific collaboration broken?

June 12, 2014 | Posted by Tess Mayall in Infographics |

At Science Exchange, we believe that collaboration is the future of science. In fact, we created Science Exchange to help scientists access top equipment and expertise to simplify their collaborations.

We wanted to learn how scientists are currently working with their peers, so we surveyed over 1500 scientists about their collaborations. Check out our infographic below which summarizes the enlightening data on the state of collaboration.


Check out 2000+ experiments you can order on Science Exchange here.

Use the code below to embed this infographic:

Science Exchange Stories: Hannah Margolis, High School Scientist

May 29, 2014 | Posted by Tess Mayall in Scientist Spotlight |
Hannah Margolis prepping yeast cells for her project at Elko High School.

Hannah Margolis prepping yeast cells for her project at Elko High School.

Recently I interviewed an extremely unique Science Exchange user, Hannah Margolis. Hannah is a high school student studying the effect of stress on Sirtuin 2 proteins, which play a role in aging. Hannah won first place at the Elko County Science Fair and competed at Intel International’s National Science and Engineering Fair!

When I talked to Hannah, I was absolutely awestruck by her intelligence, initiative, and passion for knowledge. Check out how she approached this research problem below.

Q: How did you get the idea to look into the effect of stress?

Hannah: Last year I did a physics project, which involved blowing stuff up with alpha particles. When that was over I was looking into cosmic rays, but I found out you can’t do anything cool with cosmic rays. However, while I was looking into it I learned that people who are exposed to more cosmic rays are reported to live longer. That led to this idea called radiation hormesis – the idea that low amounts of radiation are good for you. I thought that was really weird.

I kept looking into it, and I found that any type of stress is supposed to reduce your chance of getting cancer and getting sick. It sounds great, but nobody uses it because we don’t know how it works. It’s a little bit scary to tell people to go subject themselves to low amounts of radiation – people wouldn’t do that. I wanted to try to figure out why it works, so we can someday implement it in society, because it’s a great proactive treatment. Read the rest of this entry »


May 14, 2014 | Posted by Dan in Science Exchange News |
The Science Exchange team (May 2014).

The Science Exchange team (May 2014).

Another few months, another exciting update on our ever-expanding team. As always, I’m thrilled to introduce you to our freshest and possibly most diverse new hires at Science Exchange.

Our new hires represent something we value deeply at Science Exchange – curiosity. They come from varied backgrounds and are in varied roles, but the commonality between them all is a drive to learn.

Meet the new members of our Science Exchange team below:

  • Ana Ulin’s resume would knock anyone’s socks off – she’s an electrical engineer who spent the last 8 years developing products at Google. During her time, she brought products that we all use like Google Maps and Google+ to the public, but what’s perhaps most impressive is that she learned to program by turning in handwritten coding assignments to her father starting at 7 years old! She’s truly a lifelong learner. She hit the ground running in our development team by immediately streamlining business operations with code and was awarded our FORCE award within 90 days.
  • Mennah Moustafa joins our Business Development team from Sigma-Aldrich where she lead their North American strategic sales over the course of ten years. It was love at first lunch when she interviewed, and she has quickly immersed herself in all things Science Exchange since joining. She is a unique blend of smiley, inquisitive, and strategic. These traits meant that she was digesting Science Exchange materials and creating new presentations during her first week and doing headstands to boot!
  • Charlotte Arthun joined us a few months ago as our Operations Manager. In addition to the game-changing efficiency she has brought to the office, Charlotte has instilled a passion for nature and zoology into our office environment. After her undergrad in biology, she spent years working as a field ecologist around the world – studying large cats like jaguars and pumas. Even now she exercises her curiosity by surveying river otters in the North Bay on weekends!
  • Michael Benzinou’s background is one-of-a-kind: academic, strategic, and entrepreneurial. In addition to his PhD in Molecular Biology, he lead business development at Crown Bioscience and recently took part in Lean Launchpad where he developed a way to match CRO’s with R&D projects. He is a key member of our Business Development team who has utilized his diverse background to create an exciting bench sharing initiative (more details soon) and work on our Reproducibility Project: Cancer Biology. He is also one of the tallest and wittiest French men you will ever meet.

I hope you all have enjoyed reading about our new additions as much as I enjoy working with them. We are still hiring for more jobs, check out our open positions here.

— Dan

About the author

Dan Knox is a Co-Founder of Science Exchange. Dan helped create the initial version of Science Exchange and led the company’s successful seed and Series A fundraising efforts. Now, he looks after finance, legal, HR, and operations (and even commits the occasional line of code). Dan has MSc. in Economics from City University (London) and an MBA from the Massachusetts Institute of Technology Sloan School of Management.

Science Exchange Stories: Gordon Hardy from Hunt Imaging

May 8, 2014 | Posted by Tess Mayall in Scientist Spotlight, Stories |
Gordon Hardy in the lab at Hunt Imaging.

Gordon Hardy in the lab at Hunt Imaging.

For this week’s story I spoke with Gordon Hardy who works on something most of us don’t think about very often – developing new inks and toners. More specifically, he is creating a new ink to print the small numbers on the bottom of checks. The problem is complex and interesting, check out his story below.

Q: What’s your role at Hunt Imaging?

Gordon: Mostly formulation and material analysis, but even customer support. It’s a small company, so you really have to do everything

Q: What did you use Science Exchange for? 

Gordon: It’s an inkjet project. We have expertise in magnetic ink character recognition (MICR) ink here. It’s those funny looking characters that are printed on the bottom of checks. Those are read magnetically, so the ink itself has magnetic particles embedded in it. MICR toners are well established and with the current growth in high speed production inkjet printers there is a need for MICR inkjet, but it’s not an easy thing to create because you are trying to make iron float in water.

You can do it if you make the iron small enough, but if you make it too small it loses its magnetic strength. The problem is, you make it smaller and smaller and it gets less and less magnetic. So you have to make a different type of magnet, that’s not just iron, but something that’s a little stronger. You need to make them on the order of twenty nanometers; that’s what we’re working on now.

The particle size and even the particle shape is important. For our project on Science Exchange, the Nano Research Facility conducted TEM to look at the size and shape of the iron and other oxide particles we’ve generated. Read the rest of this entry »

Reproducibility Project: Cancer Biology will receive more than $500,000 worth of reagents and models

May 1, 2014 | Posted by Elizabeth in Science Exchange News |

I’m excited to announce that top scientific suppliers BioLegend, Charles River Laboratories, Corning Incorporated, DDC Medical, EMD Millipore, Harlan Laboratories, LI-COR Biosciences, Mirus Bio, Novus Biologicals, and Sigma-Aldrich will provide more than $500,000 worth of research reagents and models to support one of our validation projects, the Reproducibility Project: Cancer Biology. The donation of reagents and models will increase the number of replication experiments that can be conducted for the Reproducibility Project: Cancer Biology, a collaboration between Science Exchange and the Center for Open Science, supported by a $1.3 million grant from the Laura and John Arnold Foundation.

These companies chose to donate to the project, because they are committed to improving the quality of research and we are thrilled to have their support!

The Reproducibility Project: Cancer Biology is independently replicating 50 recent, high-impact cancer biology studies using the Science Exchange network of expert labs. The aim of the project is to use independent replication studies to identify best practices that maximize reproducibility and facilitate an accurate accumulation of knowledge, enabling potentially impactful novel findings to be built upon by the scientific community.

Studies from Amgen and Bayer report that the majority of published results cannot be independently reproduced, but there has been no open systematic review of replication in cancer biology. The Reproducibility Project: Cancer Biology will generate an open replication dataset made available on the Open Science Framework that can be used to examine the rate of reproducibility in this field and to study factors associated with the reproducibility of experimental results.

We continue to be amazed by the wide-ranging support for this project from the scientific community – thank you so much!

Of course, the more scientific supplies that are donated the more we can get done, so if you are involved with a company that is interested in donating please email me here.

About the author

Elizabeth Iorns is the CEO of Science Exchange and Director of the Reproducibility Initiative. Elizabeth conceived the idea for Science Exchange while an Assistant Professor at the University of Miami and as CEO she drives the company’s vision, strategy and growth. She is passionate about creating a new way to foster scientific collaboration that will break down existing silos, democratize access to scientific expertise and accelerate the speed of scientific discovery. Elizabeth has a Ph.D. in Cancer Biology from the Institute of Cancer Research in London, and conducted postdoctoral research in Cancer Biology from the University of Miami’s Miller School of Medicine where her research focused on identifying mechanisms of breast cancer development and progression.

Science Exchange Stories: Pat Corsino from Nuovo Biologics

April 29, 2014 | Posted by Tess Mayall in Small Biotech Stories |


Our user Pat Corsino, a R&D Manager at Nuovo Biologics, is studying the mechanism of action behind their antiviral and oncology technologies. I spoke with him about life and efficiency at an early-stage biotech, check out his advice about being proactive at a small biotech!

Q: What does Nuovo Biologics do?

Pat: We’re a small biotech company. We’re working on novel antiviral and anti-cancer therapeutics.

Q: How often does Nuovo Biologics contract out experiments?

Pat: Quite a bit, we have several collaborators all over the country. They help us plan and perform experiments, because we have limited capabilities in house. Right now, we need to get experiments done quickly in order to get funding to expand our laboratory.

Many collaborators do experiments for us, but sometimes there are projects that we can’t do through our network. That’s where Science Exchange comes in handy, because there’s a wealth of different experiments on the site. Read the rest of this entry »

Reproducibility through peer review

April 16, 2014 | Posted by Guest in Reproducibility |

This week we are featuring a guest post on how peer review can improve reproducibility. Check out Aimee Whitcroft from Publons’ thoughts below.

There has been much talk over the last few years about the fact that most research, particularly in the medical fields, may not be reproducible – a stunning waste of time and resources.

At Publons, we’ve been following the crisis closely, and we at think improved peer review is a vital first step towards reproducibility in academic and scientific literature. Read the rest of this entry »

Cell Line Authentication and Reproducibility

April 10, 2014 | Posted by Tess Mayall in Lab Profiles |
Cell line authentication at DDC Medical.

Cell line authentication at DDC Medical.

Over a third of cell lines used for biomedical research are contaminated or misidentified resulting in wasted resources, unreliable data, and irreproducible results.1 As a result, many journals and funding agencies now require cell line authentication for their studies.

Earlier this week, I wrote about our user, Eric Hugo, who did cell line authentication on several human cell lines that he had created. The experiment gave him confidence that his cell lines had the expected XY profile, hadn’t been contaminated, and were completely unique – all crucial findings for any researcher creating new cell lines.

Until recently, it has only been possible to authenticate cell lines from humans. Excitingly, DDC Medical has just developed and released a mouse cell line authentication test, providing researchers a way to validate their mouse cell lines for the first time. Read the rest of this entry »

About Science Exchange

We are transforming scientific collaboration by creating a marketplace where scientists can order experiments from the world's top labs.

Check the Science Exchange blog for updates, opinions, guest posts and the latest happenings at Science Exchange HQ!

Visit Science Exchange →

Subscribe to the blog
Never miss a post! Science Exchange blog posts delivered right to your inbox.
Thank you for joining the SciEx revolution!
Powered By